用户名: 密码: 验证码:
Factors That Control the Reactivity of Cobalt(III)–Nitrosyl Complexes in Nitric Oxide Transfer and Dioxygenation Reactions: A Combined Experimental and Theoretical Investigation
详细信息    查看全文
文摘
Metal–nitrosyl complexes are key intermediates involved in many biological and physiological processes of nitric oxide (NO) activation by metalloproteins. In this study, we report the reactivities of mononuclear cobalt(III)–nitrosyl complexes bearing N-tetramethylated cyclam (TMC) ligands, [(14-TMC)Co<sup>IIIsup>(NO)]<sup>2+sup> and [(12-TMC)Co<sup>IIIsup>(NO)]<sup>2+sup>, in NO-transfer and dioxygenation reactions. The Co(III)–nitrosyl complex bearing 14-TMC ligand, [(14-TMC)Co<sup>IIIsup>(NO)]<sup>2+sup>, transfers the bound nitrosyl ligand to [(12-TMC)Co<sup>IIsup>]<sup>2+sup> via a dissociative pathway, {[(14-TMC)Co<sup>IIIsup>(NO)]<sup>2+sup> → {(14-TMC)Co···NO}<sup>2+sup>}, thus affording [(12-TMC)Co<sup>IIIsup>(NO)]<sup>2+sup> and [(14-TMC)Co<sup>IIsup>]<sup>2+sup> as products. The dissociation of NO from the [(14-TMC)Co<sup>IIIsup>(NO)]<sup>2+sup> complex prior to NO-transfer is supported experimentally and theoretically. In contrast, the reverse reaction, which is the NO-transfer from [(12-TMC)Co<sup>IIIsup>(NO)]<sup>2+sup> to [(14-TMC)Co<sup>IIsup>]<sup>2+sup>, does not occur. In addition to the NO-transfer reaction, dioxygenation of [(14-TMC)Co<sup>IIIsup>(NO)]<sup>2+sup> by O<sub>2sub> produces [(14-TMC)Co<sup>IIsup>(NO<sub>3sub>)]<sup>+sup>, which possesses an O,O-chelated nitrato ligand and where, based on an experiment using <sup>18sup>O-labeled O<sub>2sub>, two of the three O-atoms in the [(14-TMC)Co<sup>IIsup>(NO<sub>3sub>)]<sup>+sup> product derive from O<sub>2sub>. The dioxygenation reaction is proposed to occur via a dissociative pathway, as proposed in the NO-transfer reaction, and via the formation of a Co(II)–peroxynitrite intermediate, based on the observation of phenol ring nitration. In contrast, [(12-TMC)Co<sup>IIIsup>(NO)]<sup>2+sup> does not react with O<sub>2sub>. Thus, the present results demonstrate unambiguously that the NO-transfer/dioxygenation reactivity of the cobalt(III)–nitrosyl complexes bearing TMC ligands is significantly influenced by the ring size of the TMC ligands and/or the spin state of the cobalt ion.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700