用户名: 密码: 验证码:
Limited-Sample Coarse-Grained Strategy and Its Applications to Molecular Crystals: Elastic Property Prediction and Nanoindentation Simulations of 1,3,5-Trinitro-1,3,5-triazinane
详细信息    查看全文
  • 作者:Jian Liu ; Qun Zeng ; Yalin Zhang ; Chaoyang Zhang
  • 刊名:Journal of Physical Chemistry C
  • 出版年:2016
  • 出版时间:July 21, 2016
  • 年:2016
  • 卷:120
  • 期:28
  • 页码:15198-15208
  • 全文大小:666K
  • 年卷期:0
  • ISSN:1932-7455
文摘
Modeling plastic deformation of crystalline materials by all-atomistic methods remains a challenge, and large-scale methods, such as coarse-grained (CG) methods, are highly desirable. To overcome the difficulty in constructing CG potentials for stiff molecular crystals by conventional approaches, we propose a limited-sample coarse-grained (LSCG) strategy. We construct a CG potential of α-1,3,5-trinitro-1,3,5-triazinane (α-RDX), a widely used energetic material, and perform coarse-grained molecular dynamics (CGMD) simulations to validate the LSCG potential. We compare the calculated mechanical properties with other reported results. The results show that the LSCG method is effective when compared with the all-atomic methods and provides adequate insight into systems with larger scales. Therefore, through the LSCG method, the deformation mechanisms of α-RDX crystals under nanoindentation conditions are revealed by a series of CGMD simulations that resemble nanoindentation on their (100) surface, with nanoholes sited differently. Valuable results are obtained and understood. That is, the stress around the nanohole can trigger void collapses when the nanohole is located at a shallow position directly beneath the indentation surface. At a location deeper than 4 times the maximum impression depth, the stress around the hole is extremely weak to cause void collapse. Most of the dislocation loops are found to be parallel to the (001) plane, which is attributed to the low slip threshold of the (010) [100] slip system. This result shows that the LSCG strategy can deal with much larger systems and reveal mechanisms on the mesoscale.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700