用户名: 密码: 验证码:
Enhanced Local and Nonlocal Photoluminescence of Organic Rubrene Microrods using Surface Plasmon of Gold Nanoparticles: Applications to Ultrasensitive and Remote Biosensing
详细信息    查看全文
文摘
Nonlocal photoluminescence (PL) signal transfer through semiconducting nanostructures has been intensively studied for its potential applicability in photonic circuits, optical communications, and optical sensing. In this study, organic semiconducting rubrene microrods (MRs) were synthesized and hybridized with functionalized gold nanoparticles (Au-NPs) to optimize both their optical and biosensing properties. The steady-state local PL intensity of the rubrene MR was considerably enhanced by the Au-NPs’ hybridization due to the energy-transfer effect from the surface plasmon (SP) coupling. It was clearly observed that the nonlocal PL signal-transfer efficiency of rubrene/Au-NPs hybrid MRs drastically increased along crystalline axes with the aid of the SP effect. The coupling of exciton polaritons in the luminescent rubrene MR with the SP as well as the scattering effect contribute to the variation of the exciton decay rate, resulting in a change in the PL signal-transfer efficiency for the hybrid MRs. The enhancement of the local and nonlocal PL emission of the rubrene/Au-NPs hybrid MRs was applied to ultrasensitive and remote biosensing. We observed PL signal transfer of fluorescent-dye attached DNA along the MR and successfully detected target-DNA with a concentration of 100 picomole using rubrene/Au-NPs/probe–DNA hybrid MR.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700