用户名: 密码: 验证码:
Amorphous Formulation and in Vitro Performance Testing of Instantly Disintegrating Buccal Tablets for the Emergency Delivery of Naloxone
详细信息    查看全文
文摘
The aim of this study was to develop a freeze-dried buccal tablet for the rapid delivery of naloxone in opioid overdose. The tablet composition was optimized to produce an amorphous matrix, which was confirmed by the absence of peaks associated with crystallinity observed by differential scanning calorimetry and powder X-ray diffraction. Tablets with high gelatin content lacked adequate porosity. Mannitol was added to the formulation to bridge and intercalate gelatin’s tight polymer aggregates, however sodium bicarbonate was also required to prevent crystallization within the tablets. A linear reduction in mannitol’s recrystallization enthalpy was observed with increasing sodium bicarbonate concentration (ΔrecryH = −20.3[NaHCO3] + 220.9; r2 = 0.9, n = 18). The minimum sodium bicarbonate concentration for full inhibition of mannitol crystallization was 10.9% w/w. Freeze-dried tablets with lower amounts of sodium bicarbonate possessed a crystalline fraction that PXRD identified as mannitol hemihydrate from the unique peak at 9.7° 2θ. Mannitol’s greater affinity for both ions and residual water rather than its affinity for self-association was the mechanism for the inhibition of crystallization observed here. The optimized tablet (composition mannitol 24% w/w (4.26 mg), gelatin 65% w/w (11.7 mg), sodium bicarbonate 11% w/w (1.98 mg), and naloxone 800 μg) formed predominantly amorphous tablets that disintegrated in less than 10 s. Optimized tablets were chemically and physically stable over 9 months storage at 25 °C. As speed of drug liberation is the critical performance attribute for a solid dosage form designed to deliver drug in an emergency, a novel imaging based in vitro disintegration assay for buccal tablets was developed. The assay was optimized with regard to conditions in the buccal cavity: i.e., temperature 33–37 °C, volume of medium (0.1–0.7 mL), and use of mucin-containing biorelevant medium. The disintegration assay was sensitive to temperature, medium volume, and medium composition; naloxone tablet disintegration was extremely rapid, with full disintegration ranging from 5 to 20 s. In conclusion, rapidly disintegrating tablets have been developed which are suitable for proof-of-concept clinical trial in humans to determine the pharmacokinetics of naloxone delivered via the buccal route.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700