用户名: 密码: 验证码:
Radiation-Induced Helium Nanobubbles Enhance Ductility in Submicron-Sized Single-Crystalline Copper
详细信息    查看全文
文摘
The workability and ductility of metals usually degrade with exposure to irradiation, hence the phrase “radiation damage”. Here, we found that helium (He) radiation can actually enhance the room-temperature deformability of submicron-sized copper. In particular, Cu single crystals with diameter of 100–300 nm and containing numerous pressurized sub-10 nm He bubbles become stronger, more stable in plastic flow and ductile in tension, compared to fully dense samples of the same dimensions that tend to display plastic instability (strain bursts). The sub-10 nm He bubbles are seen to be dislocation sources as well as shearable obstacles, which promote dislocation storage and reduce dislocation mean free path, thus contributing to more homogeneous and stable plasticity. Failure happens abruptly only after significant bubble coalescence. The current findings can be explained in light of Weibull statistics of failure and the beneficial effects of bubbles on plasticity. These results shed light on plasticity and damage developments in metals and could open new avenues for making mechanically robust nano- and microstructures by ion beam processing and He bubble engineering.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700