用户名: 密码: 验证码:
Limits of Carrier Diffusion in n-Type and p-Type CH3NH3PbI3 Perovskite Single Crystals
详细信息    查看全文
文摘
Using a combination of scanning photocurrent microscopy (SPCM) and time-resolved microwave conductivity (TRMC) measurements, we monitor the diffusion and recombination of photoexcited charges in CH3NH3PbI3 perovskite single crystals. The majority carrier type was controlled by growing crystals in the presence or absence of air, allowing the diffusion lengths of electrons (LDe) and holes (LDh+) to be directly imaged with SPCM (LDe = 10–28 μm, LDh+ = 27–65 μm). TRMC measurements reveal a photogenerated carrier mobility (μh + μe) of 115 ± 15 cm2 V–1 s–1 and recombination that depends on the excitation intensity. From the intensity dependence of the recombination kinetics and by accounting for carrier diffusion away from the point of photogeneration, we extract a second-order recombination rate constant (krad = 5 ± 3 × 10–10 cm3/s) that is consistent with the predicted radiative rate. First-order recombination at low photoexcited carrier density (knrp-type = 1.0 ± 0.3 × 105 s–1, knrn-type = 1.5 ± 0.3 × 105 s–1) is slower than that observed in CH3NH3PbI3 thin films or in GaAs single crystals with AlGaAs passivation layers. By accounting for the dilution of photogenerated carriers upon diffusion, and by combining SPCM and TRMC measurements, we resolve disagreement between previous reports of carrier diffusion length.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700