用户名: 密码: 验证码:
A Molecular Tetrapod for Organic Photovoltaics
详细信息    查看全文
  • 作者:Jianzhong Yang ; Zhen Zhang ; Yang Qin
  • 刊名:ACS Applied Materials & Interfaces
  • 出版年:2016
  • 出版时间:August 31, 2016
  • 年:2016
  • 卷:8
  • 期:34
  • 页码:22392-22401
  • 全文大小:522K
  • 年卷期:0
  • ISSN:1944-8252
文摘
The synthesis and characterization of a molecular tetrapod, SFBTD, featuring a tetraphenylsilane center and four identical conjugated arms, which structurally resembles breakwaters in common wave-reducing shore constructions, are reported. Cyclic voltammetry reveals that SFBTD has a medium band gap of ca. 2.0 eV and a low-lying HOMO energy level at ca. −5.2 eV. Absorption spectroscopy, X-ray diffraction, and differential scanning calorimetry experiments reveal a low degree of crystallinity in this compound and slow crystallization kinetics. Bulk heterojunction organic photovoltaics (OPVs) employing SFBTD and fullerene derivatives exhibit power conversion efficiencies (PCEs) up to 1.05% and open-circuit voltage (VOC) values as high as 1.02 V. To the best of our knowledge, this is the highest PCE obtained for OPVs employing molecular tetrapods as donor materials. These devices are relatively thermally stable due to the known ability of breakwater tetrapods to interlock, preventing dislodging and sliding. The lack of favorable phase separations and low hole mobilities of the blend films are the major factors limiting the device performance. Ternary blend devices by the addition of three low band gap poly(thienylene vinylene) (PTV) derivatives were fabricated and tested. We found that the added PTVs acted to be either the major hole conductor or a competing hole conduction channel depending on the HOMO level positions relative to that of SFBTD. Some of the ternary OPV devices out-performed the corresponding binary counterparts employing SFBTD or PTVs alone, suggesting cooperative effects in the ternary systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700