用户名: 密码: 验证码:
One-Step Catalytic Synthesis of CuO/Cu2O in a Graphitized Porous C Matrix Derived from the Cu-Based Metal–Organic Framework for Li- and Na-Ion Batteries
详细信息    查看全文
文摘
The hybrid composite electrode comprising CuO and Cu2O micronanoparticles in a highly graphitized porous C matrix (CuO/Cu2O-GPC) has a rational design and is a favorable approach to increasing the rate capability and reversible capacity of metal oxide negative materials for Li- and Na-ion batteries. CuO/Cu2O-GPC is synthesized through a Cu-based metal–organic framework via a one-step thermal transformation process. The electrochemical performances of the CuO/Cu2O-GPC negative electrode in Li- and Na-ion batteries are systematically studied and exhibit excellent capacities of 887.3 mAh g–1 at 60 mA g–1 after 200 cycles in a Li-ion battery and 302.9 mAh g–1 at 50 mA g–1 after 200 cycles in a Na-ion battery. The high electrochemical stability was obtained via the rational strategy, mainly owing to the synergy effect of the CuO and Cu2O micronanoparticles and highly graphitized porous C formed by catalytic graphitization of Cu nanoparticles. Owing to the simple one-step thermal transformation process and resulting high electrochemical performance, CuO/Cu2O-GPC is one of the prospective negative active materials for rechargeable Li- and Na-ion batteries.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700