用户名: 密码: 验证码:
Controlling the Integration of Polyvinylpyrrolidone onto Substrate by Quartz Crystal Microbalance with Dissipation To Achieve Excellent Protein Resistance and Detoxification
详细信息    查看全文
文摘
Blood purification systems, in which the adsorbent removes exogenous and endogenous toxins from the blood, are widely used in clinical practice. To improve the protein resistance of and detoxification by the adsorbent, researchers can modify the adsorbent with functional molecules, such as polyvinylpyrrolidone (PVP). However, achieving precise control of the functional molecular density, which is crucial to the activity of the adsorbent, remains a significant challenge. In the present study, we prepared a model system for blood purification adsorbents in which we controlled the integration density of PVP molecules of different molecular weights on an Au substrate by quartz crystal microbalance with dissipation (QCM-D). We characterized the samples with atomic force microscopy, X-ray photoelectron spectroscopy, and QCM-D and found that the molecular density and the chain length of the PVP molecules played important roles in determining the properties of the sample. At the optimal condition, the modified sample demonstrated strong resistance to plasma proteins, decreasing the adsorption of human serum albumin (HSA) and fibrinogen (Fg) by 92.5% and 79.2%, respectively. In addition, the modified sample exhibited excellent detoxification, and the adsorption of bilirubin increased 2.6-fold. Interestingly, subsequent atomistic molecular dynamics simulations indicated that the favorable interactions between PVP and bilirubin were dominated by hydrophobic interactions. An in vitro platelet adhesion assay showed that the adhesion of platelets on the sample decreased and that the platelets were maintained in an inactivated state. The CCK-8 assay indicated that the modified sample exhibited negligible cytotoxicity to L929 cells. These results demonstrated that our method holds great potential for the modification of adsorbents in blood purification systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700