用户名: 密码: 验证码:
Enhanced in Vitro and in Vivo Performance of Mg–Zn–Y–Nd Alloy Achieved with APTES Pretreatment for Drug-Eluting Vascular Stent Application
详细信息    查看全文
文摘
Bioabsorbable magnesium alloys are becoming prominent as temporary functional implants, as they avoid the risks generated by permanent metallic implants such as persistent inflammation and late restenosis. Nevertheless, the overfast corrosion of Mg alloys under physiological conditions hinders their wider application as medical implant materials. Here we investigate a simple one-step process to introduce a cross-linked 3-amino-propyltrimethoxysilane (APTES) silane physical barrier layer on the surface of Mg–Zn–Y–Nd alloys prior to electrostatic spraying with rapamycin-eluting poly(lactic-co-glycolic acid) (PLGA) layer. Surface microstructure was characterized by scanning electron microscope and Fourier transform infrared spectroscopy. Nanoscratch test verified the superior adhesion strength of PLGA coating in the group pretreated with APTES. Electrochemical tests combined with long-term immersion results suggested that the preferable in vitro anticorrosion behavior could be achieved by dense APTES barrier. Cell morphology and proliferation data demonstrated that APTES pretreated group resulted in remarkably preferable compatibility for both human umbilical vein endothelial cells and vascular smooth muscle cells. On the basis of excellent in vitro mechenical property, the animal study on the APTES pretreated Mg–Zn–Y–Nd stent implanted into porcine coronary arteries confirmed benign tissue compatibility as well as re-endothelialization without thrombogenesis or in-stent restenosis at six-month followup.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700