用户名: 密码: 验证码:
Role of Interfacial Layers in Organic Solar Cells: Energy Level Pinning versus Phase Segregation
详细信息    查看全文
文摘
Organic photovoltaics (OPVs) are assembled from a complex ensemble of layers of disparate materials, each playing a distinct role within the device. In this work, the role of the interface that bridges the transparent anode and the bulk heterojunction (BHJ) in an OPV device was investigated. The surface characteristics of the electrode interface affect the energy level alignment, phase segregation, and the local composition of the bulk heterojunction (BHJ), which is in close contact. The commonly used ITO/PEDOT:PSS electrode was tailored with a thin, low-band-gap polymer overlayer, called PBDTTPD-COOH, a variant of the established donor polymer, PBDTTPD. Three BHJs that were composed of a donor polymer and PC71BM, were examined, including the donor polymers PBDTTPD, PCDTBT, and PTB7, within the following OPV device stack: ITO/(interfacial layer or layers)/BHJ/LiF/Al/Mg. It was found that modification of the ITO/PEDOT:PSS electrode with PBDTTPD-COOH resulted in statistically significant increases of power conversion efficiency for the PBDTTPD- and PCDTBT-based donor polymer:PC71BM BHJs, but not for the PTB7:PC71BM BHJ. Ultraviolet photoelectron spectroscopy (UPS) enabled determination of the respective energy level diagrams for these three different polymers relative to the ITO/PEDOT:PSS/PBDTTPD-COOH electrode, and revealed no injection barrier in all three polymer/substrate pairs. The observed differences of efficiency were not, therefore, electronic in origin. ToF-SIMS depth profiling and detailed experiments to determine surface energies strongly suggested that the greatest factor influencing device performance was a significant change of the local composition of the BHJ at this interface. When favorable accumulation of the donor polymer at the PEDOT:PSS/interfacial layer was observed, the result was higher OPV device efficiencies. These results suggest that for each BHJ, the surface energies of the electrodes need to be carefully considered, as they will influence the local composition of the BHJ and resulting device performance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700