用户名: 密码: 验证码:
Outstanding Antibiofilm Features of Quanta-CuO Film on Glass Surface
详细信息    查看全文
文摘
Intelligently designed surface nanoarchitecture provides defined control over the behavior of cells and biomolecules at the solid–liquid interface. In this study, CuO quantum dots (quanta-CuO; ∼3–5 nm) were synthesized by a simple, low-temperature solution process and further formulated as paint to construct quanta-CuO thin film on glass. Surface morphological characterizations of the as-coated glass surface reveal a uniform film thickness (∼120 ± 10 nm) with homogeneous distribution of quanta-CuO. The antibiofilm assay showed a very high contact bacteria-killing capacity of as-coated quanta-CuO glass surfaces toward Staphylococcus aureus and Escherichia coli. This efficient antibacterial/antibiofilm activity was ascribed to the intracellular reactive oxygen species (ROS) generated by the quanta-CuO attached to the bacterial cells, which leads to an oxidative assault and finally results in bacterial cell death. Although there is a significant debate regarding the CuO nanostructure’s antibacterial mode of action, we propose both contact killing and/or copper ion release killing mechanisms for the antibiofilm activity of quanta-CuO paint. Moreover, synergism of quanta-CuO with conventional antibiotics was also found to further enhance the antibacterial efficacy of commonly used antibiotics. Collectively, this state-of-the-art design of quanta-CuO coated glass can be envisioned as promising candidates for various biomedical and environmental device coatings.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700