用户名: 密码: 验证码:
Au@MnS@ZnS Core/Shell/Shell Nanoparticles for Magnetic Resonance Imaging and Enhanced Cancer Radiation Therapy
详细信息    查看全文
文摘
Although conventional radiotherapy (RT) has been widely used in the clinic to treat cancer, it often has limited therapeutic outcomes and severe toxic effects. There is still a need to develop theranostic agents with both imaging and RT-enhancing functions to improve the accuracy and efficiency of RT. Herein we synthesize Au@MnS@ZnS core/shell/shell nanoparticles with polyethylene glycol (PEG) functionalization, yielding Au@MnS@ZnS-PEG nanoparticles with great stability in different physiological solutions and no significant cytotoxicity. It is found that Au@MnS@ZnS-PEG nanoparticles can enhance the cancer cell killing efficiency induced by RT, as evidenced by multiple in vitro assays. Owing to the existence of paramagnetic Mn2+ in the nanoparticle shell, our Au@MnS@ZnS-PEG can be used as a contrast agent for T1-weighted magnetic resonance (MR) imaging, which reveals the efficient accumulation and retention of nanoparticles in the tumors of mice after intravenous injection. Importantly, by exposing tumor-bearing mice that were injected with Au@MnS@ZnS-PEG to X-ray irradiation, the tumor growth can be significantly inhibited. This result shows clearly improved therapeutic efficacy compared to RT alone. Furthermore, no obvious side effect of Au@MnS@ZnS-PEG is observed in the injected mice. Therefore, our work presents a new type of radiosensitizing agent, which is promising for the imaging-guided enhanced RT treatment of cancer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700