用户名: 密码: 验证码:
Sialic Acid-Targeted Nanovectors with Phenylboronic Acid-Grafted Polyethylenimine Robustly Enhance siRNA-Based Cancer Therapy
详细信息    查看全文
文摘
Small interference RNA (siRNA)-based therapy holds great potential for cancer treatment. However, its clinical application remains unsatisfied due to the lack of a safe and effective RNA delivery system. Aberrantly elevated sialyation on cell membrane has been reported as an attractive target for cancer diagnosis and therapy. In this study, phenylboronic acid (PBA) was conjugated onto low molecular weight polyethylenimine (PEI1.8k) to generate amphiphilic PBA-grafted PEI1.8k (PEI-PBA) nanovector, which was designed to facilitate cancer-targeted RNA delivery through the recognition of sialic structures on a cancer cell membrane. PEI-PBA simultaneously encapsulated siRNA to form PEI-PBA/siRNA nanocomplexes with great biocompatibility, serum stability and RNase resistance. The cell culture study showed that PEI-PBA/siRNA dramatically increased siRNA uptake up to 70–90% in several cancer cell lines, which relied on the interaction between PBA and sialic acid on cell membrane. Moreover, the PEI-PBA nanovector effectively promoted the lysosome escape of siRNA, decreasing the expression of target gene Polo-like kinase 1 (PLK-1) in cancer cells. The systemic administration of PEI-PBA/PLK-1 siRNA (PEI-PBA/siPLK1) nanocomplexes not only facilitated tumor-targeted siRNA delivery but also significantly decreased PLK-1 expression in tumors, thereby robustly inducing tumor apoptosis and cell cycle arrest. Additionally, the administration of PEI-PBA/siPLK1 did not cause significant systemic toxicity or immunotoxicity. Hence, sialic acid-targeted PEI-PBA could be a highly efficient and safe nanovector to improve the efficacy of cancer siRNA therapy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700