用户名: 密码: 验证码:
Multiparameter Optimization in Directed Evolution: Engineering Thermostability, Enantioselectivity, and Activity of an Epoxide Hydrolase
详细信息    查看全文
文摘
The challenge of optimizing several parameters in the directed evolution of enzymes remains a central issue. In this study we address the thermostability, enantioselectivity, and activity of limonene epoxide hydrolase (LEH) as the catalyst in the hydrolytic desymmetrization of cyclohexene oxide with formation of (R,R)- and (S,S)-cyclohexane-1,2-diol. Wild type LEH shows a thermostability of T5030 = 41 °C and an enanioselectivity of 2% ee (S,S). Two approaches are described herein. In one strategy, the mutations generated previously by Janssen, Baker, and co-workers for notably increased thermostability are combined with mutations evolved earlier for enhanced enantioselectivity. Although highly enantioselective R,R and S,S variants (92–93% ee) with increases in T5030 by 10–11 °C were obtained, relative to wild type LEH the tradeoff in activity was significant. The second strategy based on the simultaneous optimization of both parameters using iterative saturation mutagenesis (ISM) with minimized tradeoff in activity proved to be superior. Several notably improved variants were observed, a reasonable “compromise” being R,R- and S,S-selective LEH variants (80–94% ee) showing enhanced thermostability by 5–10 °C and still reasonable levels of activity. Analysis of the X-ray structure of the S,S variant (94% ee) with and without diol product sheds light on the origin of altered stereoselectivity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700