用户名: 密码: 验证码:
Remedying Defects in Carbon Nitride To Improve both Photooxidation and H2 Generation Efficiencies
详细信息    查看全文
文摘
The outstanding visible light response of carbon nitride has aroused intense expectations regarding its photocatalysis, but it is impeded by the inevitable defects. Here, we report on a facile melamine-based defect-remedying strategy and resultant carbon nitride high-performance photocatalysts (R-C3N4). Melamine with amino groups and a triazine structure was selected as a “little patch” to passivate and remedy various defects inside carbon nitride. Such a remedying effect has been comprehensively proven by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) analyses, and the ninhydrin test. In addition, their effects on photocatalysis were also individually confirmed by chemical methods, including cyano reduction reactions and deamination reactions. Furthermore, melamine remediation can result in g-C3N4/mpg-C3N4 junctions, which also favors electron transfer and charge separation during the photocatalytic reaction. In order to explore its broader applications, R-C3N4 was used as a photocatalyst for the photooxidation reaction of 1,4-dihydro-2,6-dimethylpyridine-3,5-dicarboxylate (1,4-DHP) and simultaneous H2 evolution. The conversion rates of 1,4-DHP and H2 production catalyzed by R-C3N4 were enhanced 2 and 6.5 times, respectively. This rational design is beneficial for the conversion of 1,4-DHP during the preparation of bioactive compounds and clean hydrogen production at the same time.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700