用户名: 密码: 验证码:
In Vitro Metabolic Stability and in Vivo Biodistribution of 3-Methyl-4-furoxancarbaldehyde Using PET Imaging in Rats
详细信息    查看全文
文摘
Painful diabetic neuropathy (PDN) is a type of peripheral neuropathic pain that is currently difficult to treat using clinically available analgesics. Recent work suggests a progressive depletion of nitric oxide (NO) in nerve cells may be responsible for the pathobiology of PDN. The nitric oxide donor, 3-methyl-4-furoxancarbaldehyde (PRG150), has been shown to produce dose-dependent analgesia in a rat model of PDN. To gain insight into the mechanism of analgesia, methods to radiolabel PRG150 were developed to assess the in vivo biodistribution in rats. The furoxan ring was labeled with 13N to follow any nitric oxide release and the 3-methyl substituent was labeled with 11C to track the metabolite using PET imaging. The in vitro metabolic stability of PRG150 was assessed in rat liver microsomes and compared to in vivo metabolism of the synthesized radiotracers. PET images revealed a higher uptake of 13N over 11C radioactivity in the spinal cord. The differences in radioactive uptake could indicate that a NO release in the spinal cord and other components of the somatosensory nervous system may be responsible for the analgesic effects of PRG150 seen in the rat model of PDN.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700