用户名: 密码: 验证码:
Nanocomposite Membranes Enhance Bone Regeneration Through Restoring Physiological Electric Microenvironment
详细信息    查看全文
文摘
Physiological electric potential is well-known for its indispensable role in maintaining bone volume and quality. Although implanted biomaterials simulating structural, morphological, mechanical, and chemical properties of natural tissue or organ has been introduced in the field of bone regeneration, the concept of restoring physiological electric microenvironment remains ignored in biomaterials design. In this work, a flexible nanocomposite membrane mimicking the endogenous electric potential is fabricated to explore its bone defect repair efficiency. BaTiO3 nanoparticles (BTO NPs) were first coated with polydopamine. Then the composite membranes are fabricated with homogeneous distribution of Dopa@BTO NPs in poly(vinylidene fluoridetrifluoroethylene) (P(VDF-TrFE)) matrix. The surface potential of the nanocomposite membranes could be tuned up to −76.8 mV by optimizing the composition ratio and corona poling treatment, which conform to the level of endogenous biopotential. Remarkably, the surface potential of polarized nanocomposite membranes exhibited a dramatic stability with more than half of original surface potential remained up to 12 weeks in the condition of bone defect. In vitro, the membranes encouraged bone marrow mesenchymal stem cells (BM-MSCs) activity and osteogenic differentiation. In vivo, the membranes sustainably maintained the electric microenvironment giving rise to rapid bone regeneration and complete mature bone-structure formation. Our findings evidence that physiological electric potential repair should be paid sufficient attention in biomaterials design, and this concept might provide an innovative and well-suited strategy for bone regenerative therapies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700