用户名: 密码: 验证码:
Mesoporous LixMn2O4 Thin Film Cathodes for Lithium-Ion Pseudocapacitors
详细信息    查看全文
文摘
Charge storage devices with high energy density and enhanced rate capabilities are highly sought after in today’s mobile world. Although several high-rate pseudocapacitive anode materials have been reported, cathode materials operating in a high potential range versus lithium metal are much less common. Here, we present a nanostructured version of the well-known cathode material, LiMn2O4. The reduction in lithium-ion diffusion lengths and improvement in rate capabilities is realized through a combination of nanocrystallinity and the formation of a 3-D porous framework. Materials were fabricated from nanoporous Mn3O4 films made by block copolymer templating of preformed nanocrystals. The nanoporous Mn3O4 was then converted via solid-state reaction with LiOH to nanoporous LixMn2O4 (1 < x < 2). The resulting films had a wall thickness of ∼15 nm, which is small enough to be impacted by inactive surface sites. As a consequence, capacity was reduced by about half compared to bulk LiMn2O4, but both charge and discharge kinetics as well as cycling stability were improved significantly. Kinetic analysis of the redox reactions was used to verify the pseudocapacitive mechanisms of charge storage and establish the feasibility of using nanoporous LixMn2O4 as a cathode in lithium-ion devices based on pseudocapacitive charge storage.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700