用户名: 密码: 验证码:
Self-Powered Safety Helmet Based on Hybridized Nanogenerator for Emergency
详细信息    查看全文
文摘
The rapid development of Internet of Things and the related sensor technology requires sustainable power sources for their continuous operation. Scavenging and utilizing the ambient environmental energy could be a superior solution. Here, we report a self-powered helmet for emergency, which was powered by the energy converted from ambient mechanical vibration via a hybridized nanogenerator that consists of a triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG). Integrating with transformers and rectifiers, the hybridized nanogenerator can deliver a power density up to 167.22 W/m3, which was demonstrated to light up 1000 commercial light-emitting diodes (LEDs) instantaneously. By wearing the developed safety helmet, equipped with rationally designed hybridized nanogenerator, the harvested vibration energy from natural human motion is also capable of powering a wireless pedometer for real-time transmitting data reporting to a personal cell phone. Without adding much extra weight to a commercial one, the developed wearing helmet can be a superior sustainable power source for explorers, engineers, mine-workers under well, as well as and disaster-relief workers, especially in remote areas. This work not only presents a significant step toward energy harvesting from human biomechanical movement, but also greatly expands the applicability of TENGs as power sources for self-sustained electronics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700