用户名: 密码: 验证码:
Multilayer Transfer Printing for Pixelated, Multicolor Quantum Dot Light-Emitting Diodes
详细信息    查看全文
文摘
Here, we report multilayer stacking of films of quantum dots (QDs) for the purpose of tailoring the energy band alignment between charge transport layers and light emitting layers of different color in quantum dot light-emitting diodes (QD LED) for maximum efficiency in full color operation. The performance of QD LEDs formed by transfer printing compares favorably to that of conventional devices fabricated by spin-casting. Results indicate that zinc oxide (ZnO) and titanium dioxide (TiO2) can serve effectively as electron transport layers (ETLs) for red and green/blue QD LEDs, respectively. Optimized selections for each QD layer can be assembled at high yields by transfer printing with sacrificial fluoropolymer thin films to provide low energy surfaces for release, thereby allowing shared common layers for hole injection (HIL) and hole transport (HTL), along with customized ETLs. This strategy allows cointegration of devices with heterogeneous energy band diagrams, in a parallelized scheme that offers potential for high throughput and practical use.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700