用户名: 密码: 验证码:
Intraparticle Molecular Orbital Engineering of Semiconducting Polymer Nanoparticles as Amplified Theranostics for in Vivo Photoacoustic Imaging and Photothermal Therapy
详细信息    查看全文
文摘
Optical theranostic nanoagents that seamlessly and synergistically integrate light-generated signals with photothermal or photodynamic therapy can provide opportunities for cost-effective precision medicine, while the potential for clinical translation requires them to have good biocompatibility and high imaging/therapy performance. We herein report an intraparticle molecular orbital engineering approach to simultaneously enhance photoacoustic brightness and photothermal therapy efficacy of semiconducting polymer nanoparticles (SPNs) for in vivo imaging and treatment of cancer. The theranostic SPNs have a binary optical component nanostructure, wherein a near-infrared absorbing semiconducting polymer and an ultrasmall carbon dot (fullerene) interact with each other to induce photoinduced electron transfer upon light irradiation. Such an intraparticle optoelectronic interaction augments heat generation and consequently enhances the photoacoustic signal and maximum photothermal temperature of SPNs by 2.6- and 1.3-fold, respectively. With the use of the amplified SPN as the theranostic nanoagent, it permits enhanced photoacoustic imaging and photothermal ablation of tumor in living mice. Our study thus not only introduces a category of purely organic optical theranostics but also highlights a molecular guideline to amplify the effectiveness of light-intensive imaging and therapeutic nanosystems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700