用户名: 密码: 验证码:
Plasmonic Metasurfaces for Nonlinear Optics and Quantitative SERS
详细信息    查看全文
文摘
Plasmonic metasurfaces consist of two-dimensional arrays of metallic nanoresonators (plasmonic “meta-atoms”), which exhibit collective and tunable resonance properties controlled by electromagnetic near-field coupling. These man-made surfaces can produce a range of unique optical properties unattainable with natural materials. In this review, we focus on the emerging applications of metasurfaces with precisely engineered plasmonic properties for nonlinear optics and surface-enhanced Raman spectroscopy (SERS). In practice, these applications are quite susceptible to material losses and structural imperfections, such as variations in size, shape, periodicity of meta-atoms, and their material states (crystallinity, impurity, and oxidation, etc.). In these aspects, conventional top-down lithographic techniques are facing major challenges due to inherent limitations in intrinsic material properties and material quality introduced during growth, synthesis, and fabrication processes, as well as achievable lithographic resolution. Moreover, they are prohibitively expensive and time-consuming for fabrication over large areas. Here, we show that colloidal silver crystals (millimeter-sized single-crystalline plates and thiolate-capped nanoparticles) synthesized by solution-based chemical methods are excellent material platforms for the fabrication of high-quality plasmonic metasurfaces. In particular, both top-down (focused ion-beam milling) and bottom-up (centimeter-scale self-assembly) techniques can be exploited to generate uniform and precisely engineered colloidal metasurfaces for broadband tunable (across the full visible range) second-harmonic generation and quantitative SERS at the single-molecule level.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700