用户名: 密码: 验证码:
Conductive Polymer-Coated Carbon Nanotubes To Construct Stretchable and Transparent Electrochemical Sensors
详细信息    查看全文
文摘
Carbon nanotube (CNT)-based flexible sensors have been intensively developed for physical sensing. However, great challenges remain in fabricating stretchable CNT films with high electrochemical performance for real-time chemical sensing, due to large sheet resistance of CNT film and further resistance increase caused by separation between each CNT during stretching. Herein, we develop a facile and versatile strategy to construct single-walled carbon nanotubes (SWNTs)-based stretchable and transparent electrochemical sensors, by coating and binding each SWNT with conductive polymer. As a polymer with high conductivity, good electrochemical activity, and biocompatibility, poly(3,4-ethylenedioxythiophene) (PEDOT) acting as a superior conductive coating and binder reduces contact resistance and greatly improves the electrochemical performance of SWNTs film. Furthermore, PEDOT protects the SWNTs junctions from separation during stretching, which endows the sensor with highly mechanical compliance and excellent electrochemical performance during big deformation. These unique features allow real-time monitoring of biochemical signals from mechanically stretched cells. This work represents an important step toward construction of a high performance CNTs-based stretchable electrochemical sensor, therefore broadening the way for stretchable sensors in a diversity of biomedical applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700