用户名: 密码: 验证码:
Efficient Methane Production from Beer Wastewater in a Membraneless Microbial Electrolysis Cell with a Stacked Cathode: The Effect of the Cathode/Anode Ratio on Bioenergy Recovery
详细信息    查看全文
文摘
A methane-producing microbial electrolysis cell (MEC) is a promising energy-recovery technology, yet its performance is generally inhibited by the insufficient cathode/anode ratio. In this study, a novel stacked stainless-steel-mesh cathode was designed to investigate the effect of the cathode/anode ratio on methane production in semi-continuous MECs. Overall, energy recovery was significantly enhanced by increasing the cathode/anode ratio. The methane production rate in R3 (cathode/anode ratio of 4 cm2/cm3) reached 0.14 m3 m–3 day–1 with an applied voltage of 0.9 V, which increased by 56–180% compared to the methane production rates in R2 (2.5 cm2/cm3) and R1 (1 cm2/cm3). The overall energy efficiency in R3 was 66–94% higher than the overall energy efficiencies in R2 and R1. The cathode area was sufficient for obtaining and maintaining a maximum current when the cathode/anode ratio was higher than 2.5 cm2/cm3. According to electron balance analysis, when the cathode/anode ratio was less than 2.5 cm2/cm3, the methane production enhancement was mainly attributed to the promotion of bioelectrochemical performance, while the sole biomass contribution was enhanced and led to further improvement in overall methane production when the ratio was above 2.5 cm2/cm3. In general, increasing the cathode/anode ratio of the staked-style cathode would be an effective strategy to improve the methane production in the membraneless MECs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700