用户名: 密码: 验证码:
Edgeless Ag–Pt Bimetallic Nanocages: In Situ Monitor Plasmon-Induced Suppression of Hydrogen Peroxide Formation
详细信息    查看全文
文摘
Improvements in the performance of electrocatalysts, along with continuing advances in selective pathway for target reaction, have great potential to offer opportunities in designing competitive reactions especially for using a photophysical process owing to its tunable properties. Herein, we demonstrated a first empirical evidence of suppressing the formation of undesired peroxide intermediate through plasmonic effects, in which plasmonic Ag–Pt bimetallic nanocages were synthesized with an edgeless feature, and a custom-made RDE/RRDE working station was designed to provide unique means by which to in situ realize the plasmon-induced effects toward the target reaction. The edgeless Ag–Pt bimetallic nanocages with hollow interior performed newly plasmon-induced effects, which was characteristic of photodependent nature to suppress the formation of undesired peroxide intermediate. We concluded that the plasmon-induced hot electron transfer governed the suppression of peroxide formation instead of plasmon-induced heating that would cause a negative effect (i.e., increase of peroxide yield), in which the hot electron transfer of Ag nanostructure offered a sufficient energy to populate the antibonding orbital of O2 as illustrated by in situ X-ray absorption approach. This rapid light-dependent nature corresponding to localized surface plasmon resonance in present nanocages can potentially offer synergetic strategies toward altering the chemical reactions or reaction pathways in various fields.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700