用户名: 密码: 验证码:
O–H Activation by an Unexpected Ferryl Intermediate during Catalysis by 2-Hydroxyethylphosphonate Dioxygenase
详细信息    查看全文
文摘
Activation of O–H bonds by inorganic metal-oxo complexes has been documented, but no cognate enzymatic process is known. Our mechanistic analysis of 2-hydroxyethylphosphonate dioxygenase (HEPD), which cleaves the C1–C2 bond of its substrate to afford hydroxymethylphosphonate on the biosynthetic pathway to the commercial herbicide phosphinothricin, uncovered an example of such an O–H-bond-cleavage event. Stopped-flow UV–visible absorption and freeze-quench Mössbauer experiments identified a transient iron(IV)-oxo (ferryl) complex. Maximal accumulation of the intermediate required both the presence of deuterium in the substrate and, importantly, the use of 2H2O as solvent. The ferryl complex forms and decays rapidly enough to be on the catalytic pathway. To account for these unanticipated results, a new mechanism that involves activation of an O–H bond by the ferryl complex is proposed. This mechanism accommodates all available data on the HEPD reaction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700