用户名: 密码: 验证码:
Metalloporphyrin-Encapsulated Biodegradable Nanosystems for Highly Efficient Magnetic Resonance Imaging-Guided Sonodynamic Cancer Therapy
详细信息    查看全文
文摘
Traditional photodynamic therapy (PDT) suffers from the critical issues of low tissue-penetrating depth of light and potential phototoxicity, which are expected to be solved by developing new dynamic therapy-based therapeutic modalities such as sonodynamic therapy (SDT). In this work, we report on the design/fabrication of a high-performance multifunctional nanoparticulate sonosensitizer for efficient in vivo magnetic resonance imaging (MRI)-guided SDT against cancer. The developed approach takes the structural and compositional features of mesoporous organosilica-based nanosystems for the fabrication of sonosensitizers with intriguing theranostic performance. The well-defined mesoporosity facilitates the high loading of organic sonosensitizers (protoporphyrin, PpIX) and further chelating of paramagnetic transitional metal Mn ions based on metalloporphyrin chemistry (MnPpIX). The mesoporous structure of large surface area also maximizes the accessibility of water molecules to the encapsulated paramagnetic Mn ions, endowing the composite sonosensitizers with markedly high MRI performance (r1 = 9.43 mM–1 s–2) for SDT guidance and monitoring. Importantly, the developed multifunctional sonosensitizers (HMONs-MnPpIX-PEG) with controllable biodegradation behavior and high biocompatibility show distinctively high SDT efficiency for inducing the cancer-cell death in vitro and suppressing the tumor growth in vivo. This report provides a paradigm that nanotechnology-enhanced SDT based on elaborately designed high-performance multifunctional sonosensitizers will pave a new way for efficient cancer treatment by fully taking the advantages (noninvasiveness, convenience, cost-effectiveness, etc.) of ultrasound therapy and quickly developing nanomedicine.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700