用户名: 密码: 验证码:
Quinary Interactions Weaken the Electric Field Generated by Protein Side-Chain Charges in the Cell-like Environment
详细信息    查看全文
文摘
The intramolecular electric field (e-field) generated by protein GB3 side-chain charges K/E10, K/E19, and D/K40 was measured in the absence or presence of macromolecular crowding. The e-field responds differently to different crowding agents—dextran, Ficoll, BSA, and E. coli cell lysate. Dextran and Ficoll have no effect on the e-field. The lysate generally weakens the e-field but the amplitude of weakening varies greatly. For example, the e-field by K19 is reduced by 67% in the presence of 90 g/L lysate, corresponding to a charge change from 0.9 to 0.3 e for K19, whereas the e-fields by D/K40 are weakened only by ∼7% under the same lysate concentration. The extent of the e-field weakening by BSA is in between that by Ficoll (dextran) and lysate. Further investigations suggest that the e-field weakening mechanism by lysate is similar to that by NaCl. That is, the e-field generated by a protein surface charge affects the distribution of lysate which creates a reaction field and weakens the protein e-field. Our study indicates that the protein electrostatic property can be changed significantly due to quinary interaction with the cell environment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700