用户名: 密码: 验证码:
Enabling Förster Resonance Energy Transfer from Large Nanocrystals through Energy Migration
详细信息    查看全文
文摘
The stringent distance dependence of Förster resonance energy transfer (FRET) has limited the ability of an energy donor to donate excitation energy to an acceptor over a Förster critical distance (R0) of 2–6 nm. This poses a fundamental size constraint (<8 nm or ∼4R0) for experimentation requiring particle-based energy donors. Here, we describe a spatial distribution function model and theoretically validate that the particle size constraint can be mitigated through coupling FRET with a resonant energy migration process. By combining excitation energy migration and surface trapping, we demonstrate experimentally an over 600-fold enhancement over acceptor emission for large nanocrystals (30 nm or ∼15R0) with surface-anchored molecular acceptors. Our work shows that the migration-coupled approach can dramatically improve sensitivity in FRET-limited measurement, with potential applications ranging from facile photochemical synthesis to biological sensing and imaging at the single-molecule level.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700