用户名: 密码: 验证码:
Hamiltonian Matrix Correction Based Density Functional Valence Bond Method
详细信息    查看全文
文摘
In this work, a valence bond type multireference density functional theory (MRDFT) method, called the Hamiltonian matrix correction based density functional valence bond method (hc-DFVB), is presented. In hc-DFVB, the static electronic correlation is considered by the valence bond self-consistent field (VBSCF) strategy, while the dynamic correlation energy is taken into account by Kohn–Sham density functional theory (KS-DFT). Different from our previous version of DFVB (J. Chem. Theory Comput. 2012, 8, 1608), hc-DFVB corrects the dynamic correlation energy with a Hamiltonian correction matrix, improving the functional adaptability and computational accuracy. The method was tested for various physical and chemical properties, including spectroscopic constants, bond dissociation energies, reaction barriers, and singlet–triplet gaps. The accuracy of hc-DFVB matches that of KS-DFT and high level molecular orbital (MO) methods quite well. Furthermore, hc-DFVB keeps the advantages of VB methods, which are able to provide clear interpretations and chemical insights with compact wave functions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700