用户名: 密码: 验证码:
Computational Approach to Evaluation of Optical Properties of Membrane Probes
详细信息    查看全文
文摘
Computed optical properties of membrane probes are typically evaluated in the gas phase, i.e. neglecting the influence of the membrane. In this study, we examine how and to what extent a membrane influences the one- and two-photon absorption (1PA and 2PA, respectively) properties for a number of cholesterol analogs and thereby also evaluate the validity of the common gas phase approach. The membrane is modeled using the polarizable embedding scheme both with and without the effective external field extension of the polarizable embedding model. The shifts in excitation energies and 1PA oscillator strengths compared to the gas phase are relatively small, while the 2PA cross section is more affected. The electric field inside the membrane induces a larger change in the permanent electric dipole moment upon excitation of the analogs compared to the gas phase, which leads to an almost 2-fold increase in the 2PA cross section for one cholesterol analog. The relative trends observed in the membrane are the same as in the gas phase, and the use of gas phase calculations for qualitative comparison and design of cholesterol membrane probes is thus a useful and computationally efficient strategy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700