用户名: 密码: 验证码:
Hybrid Equation-of-Motion Coupled-Cluster/Effective Fragment Potential Method: A Route toward Understanding Photoprocesses in the Condensed Phase
详细信息    查看全文
  • 作者:Debashree Ghosh
  • 刊名:Journal of Physical Chemistry A
  • 出版年:2017
  • 出版时间:February 2, 2017
  • 年:2017
  • 卷:121
  • 期:4
  • 页码:741-752
  • 全文大小:637K
  • ISSN:1520-5215
文摘
The prediction of accurate solvatochromic shifts to the electronic excited states of chromophores is a challenge, especially in the complex biological phase, due to the importance of long-range electrostatic interactions. Hybrid quantum mechanical/molecular mechanical (QM/MM) methods are generally employed for the calculation of quantum mechanical properties in complex systems. To be predictive, there is need for an accurate quantum mechanical method that can depict the charge transfer states correctly and incorporate higher than single excited determinants in its linear response ansatz. On the contrary, for the correct depiction of the environment interactions (MM region), one needs to account for polarizability in a balanced manner. These two challenges are successfully addressed by the recently developed hybrid quantum mechanical/effective fragment potential (QM/EFP) methods, with equation-of-motion coupled-cluster (EOM-CC) as the QM method of choice. The result is an efficient method to estimate excitation energy, ionization energy, electron affinity, and redox potential in the condensed phase. It has further been extended to biological systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700