用户名: 密码: 验证码:
Tunable Structural, Electronic, and Optical Properties of Layered Two-Dimensional C2N and MoS2 van der Waals Heterostructure as Photovoltaic Material
详细信息    查看全文
文摘
The nitrogenated porous two-dimensional (2D) material C2N has been successfully synthesized using a simple wet-chemical reaction, which provides a high-performance way to produce such 2D materials with novel electronic and optical properties. In this work, density functional theory (DFT) calculations were performed to investigate the structural, electronic, and optical properties of the layered C2N/MoS2 van der Waals (vdW) heterojunction. The C2N/MoS2 heterojunction was found to have a direct band gap of 1.30 eV and to present the typical type-II heterojunction feature, facilitating the effective separation of photogenerated electrons and holes. The calculated band alignment and enhanced optical absorption suggest that the C2N/MoS2 heterojunction should exhibit good light-harvesting properties. The vertical strain can effectively tune the electronic properties and optical absorption of the C2N/MoS2 heterojunction by changing the interaction between the pz orbital of C2N and the dz2 orbital of MoS2. The moderate band gap, well-separated photogenerated electrons and holes, and enhanced visible-light absorption indicate that the C2N/MoS2 heterojunction is a potential photovoltaic structure for solar energy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700