用户名: 密码: 验证码:
Hydrogen-Bond Bridged Water Oxidation on {001} Surfaces of Anatase TiO2
详细信息    查看全文
文摘
To gain an atomic-level understanding of the relationship among the surface structure, the interfacial interaction, and the water oxidation activity on TiO2, we studied the adsorption of water and its photocatalytic oxidation on anatase TiO2 with {101} and {001} exposed surfaces by in situ infrared spectroscopy, kinetic isotope effect studies, and density functional theory (DFT)-based molecular dynamics calculations. Our experimental results demonstrate that the oxidation reaction occurs exclusively on hydrogen-bonded water molecules (via surface hydroxyls) over {001} surface, whereas water molecules coordinated on the {101} surface, which are conventionally assigned to the reactive target for hole transfer, remain unchanged during the irradiation. The theoretical calculations reveal that the selective oxidation of water adsorbed on the {001} surfaces is primarily attributed to the formation of hydrogen bonds, which provides a channel to the rapid hole transfer and facilitates the O–H bond cleavage during water oxidation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700