用户名: 密码: 验证码:
Oxidation of Ethylene on Oxygen Reconstructed Silver Surfaces
详细信息    查看全文
文摘
We report on theoretical and experimental studies of the reactivity of ethylene with oxygen in two well-known oxygen induced surface reconstructions on silver, the p(2 × 1) reconstruction on the Ag(110) surface and the p(4 × 4) reconstruction on the Ag(111) surface. Density functional theory calculations demonstrate that ethylene can react with oxygen on both surfaces to form an oxametallacycle that can decompose into either ethylene oxide or a CO2 precursor, acetaldehyde. The activation energy associated with acetaldehyde formation is predicted to be 0.4 eV lower than that associated with epoxide formation on both surfaces, though we find lower barriers for all elementary steps on the p(4 × 4) reconstruction due to its unique structural dynamics. Our calculations predict these dynamics make the p(4 × 4) reconstruction active in acetaldehyde formation at room temperature. Experiments performed by exposing the p(4 × 4) reconstruction to ethylene at room temperature support this finding with CO2, the only carbonaceous product formed during temperature-programmed desorption. Our results unambiguously demonstrate that, alone, these oxygen reconstructions are not selective in ethylene epoxidation on silver.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700