用户名: 密码: 验证码:
Thermal-Responsive Anisotropic Wetting Microstructures for Manipulation of Fluids in Microfluidics
详细信息    查看全文
文摘
We show morphology-patterned stripes modified by thermal-responsive polymer for smartly guiding flow motion of fluid in chips. With a two-step modification process, we fabricated PNIPAAm-modified Si stripes on silicon slides, which were employed as substrates for fluid manipulation in microchannels. When the system temperature switches between above and below the lower critical solution temperature (LCST) of PNIPAAm, the wettability of the substrates also switches between strong anisotropy and weak anisotropy, which resulted in anisotropic (even unidirectional) flow and isotropic flow behavior of liquid in microchannels. The thermal-responsive flow motion of fluid in the chip is influenced by the applied pressure, the thickness of PNIPAAm, and dimension of the microchannels. Moreover, we measured the feasible applied pressure scopes under different structure factors. Because of the excellent reversibility and quick switching speed, the chip could be used as a thermal-responsive microvalve. Through tuning the system temperature and adding the assistant gas, we realized successive “valve” function. We believe that the practical and simple chip could be widely utilized in medical detection, immunodetection, protein analysis, and cell cultures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700