用户名: 密码: 验证码:
Oligomeric Conjugated Polyelectrolytes Display Site-Preferential Binding to an MS2 Viral Capsid
详细信息    查看全文
文摘
Opportunistic bacteria and viruses are a worldwide health threat prompting the need to develop new targeting modalities. A class of novel synthetic poly(phenylene ethynylene) (PPE)-based oligomeric conjugated polyelectrolytes (OPEs) have demonstrated potent wide-spectrum biocidal activity. A subset of cationic OPEs display high antiviral activity against the MS2 bacteriophage. The oligomers have been found to inactivate the bacteriophage and perturb the morphology of the MS2 viral capsid. However, details of the initial binding and interactions between the OPEs and the viruses are not well understood. In this study, we use a multiscale computational approach, including random sampling, molecular dynamics, and electronic structure calculations, to gain an understanding of the molecular-level interactions of a series of OPEs that vary in length, charge, and functional groups with the MS2 capsid. Our results show that OPEs strongly bind to the MS2 capsid protein assembly with binding energies of up to −30 kcal/mol. Free-energy analysis shows that the binding is dominated by strong van der Waals interactions between the hydrophobic OPE backbone and the capsid surface and strong electrostatic free energy contributions between the OPE charged moieties and charged residues on the capsid surface. This knowledge provides molecular-level insight into how to tailor the OPEs to optimize viral capsid disruption and increase OPE efficacy to target amphiphilic protein coats of icosahedral-based viruses.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700