用户名: 密码: 验证码:
Designing Sequence-Specific Copolymer Compatibilizers Using a Molecular-Dynamics-Simulation-Based Genetic Algorithm
详细信息    查看全文
文摘
Compatibilizers—surfactant molecules designed to improve the stability of an interface—are employed to enhance material properties in settings ranging from emulsions to polymer blends. A major compatibilization strategy employs block or random copolymers composed of distinct repeat units with preferential affinity for each of the two phases forming the interface. Here we pose the question of whether improved compatibilization could be achieved by employing new synthetic strategies to realize copolymer compatibilizers with specific monomeric sequence. We employ a novel molecular-dynamics-simulation-based genetic algorithm to design model sequence-specific copolymers that minimize energy of a polymer/polymer interface. Results indicate that sequence-specific copolymers offer the potential to yield larger reductions in interfacial energy than either block or random copolymers, with the preferred sequence being compatibilizer concentration dependent. By employing a simple thermodynamic scaling model for copolymer compatibilization, we pinpoint the origins of this sequence specificity and concentration dependence in the “loop entropy” of compatibilizer segments connecting interfacial bridge points. In addition to pointing toward a new strategy for improved interfacial compatibilization, this approach provides a conceptual basis for the computational design of a new generation of sequence-specific polymers leveraging recent and ongoing synthetic advances in this area.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700