用户名: 密码: 验证码:
Improved Micellar Formulation for Enhanced Delivery for Paclitaxel
详细信息    查看全文
文摘
We have previously improved the bioactivity of PEG5k-FTS2 system by incorporating disulfide bond (PEG5k-S-S-FTS2) to facilitate the release of farnesyl thiosalicylic acid (FTS).1 Later, fluorenylmethyloxycarbonyl (Fmoc) moiety has been introduced to PEG5k-FTS2 system (PEG5k-Fmoc-FTS2) in order to enhance drug loading capacity (DLC) and formulation stability.2 In this study, we have brought in both disulfide linkage and Fmoc group to PEG5k-FTS2 to form a simple PEG5k-Fmoc-S-S-FTS2 micellar system. PEG5k-Fmoc-S-S-FTS2 conjugate formed filamentous micelles with a ∼10-fold decrease in critical micellar concentration (CMC). Compared with PEG5k-Fmoc-FTS2, our novel system exhibited further strengthened DLC and colloidal stability. More FTS was freed from PEG5k-Fmoc-S-S-FTS2 in treated tumor cells compared to PEG5k-Fmoc-FTS2, which was correlated to an increased cytotoxicity of our new carrier in these cancer cells. After loading Paclitaxel (PTX) into PEG5k-Fmoc-S-S-FTS2 micelles, it showed more potent efficiency in inhibition of tumor cell proliferation than Taxol and PTX-loaded PEG5k-Fmoc-FTS2. PTX release kinetics of PTX/PEG5k-Fmoc-S-S-FTS2 was much slower than that of Taxol and PTX/PEG5k-Fmoc-FTS2 in normal release medium. In contrast, in glutathione (GSH)-containing medium, PTX in PEG5k-Fmoc-S-S-FTS2 micelles revealed faster and more complete release. Pharmacokinetics and tissue distribution study showed that our PEG5k-Fmoc-S-S-FTS2 system maintained PTX in circulation for a longer time and delivered more PTX to tumor sites with less accumulation in major organs. Finally, PTX-loaded PEG5k-Fmoc-S-S-FTS2 micelles resulted in a superior therapeutic effect in vivo compared to Taxol and PTX formulated in PEG5k-Fmoc-FTS2 micelles.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700