用户名: 密码: 验证码:
Protein Nanocage Mediated Fibroblast-Activation Protein Targeted Photoimmunotherapy To Enhance Cytotoxic T Cell Infiltration and Tumor Control
详细信息    查看全文
文摘
Carcinoma-associated fibroblasts (CAFs) are found in many types of cancer and play an important role in tumor growth and metastasis. Fibroblast-activation protein (FAP), which is overexpressed on the surface of CAFs, has been proposed as a universal tumor targeting antigen. However, recent studies show that FAP is also expressed on multipotent bone marrow stem cells. A systematic anti-FAP therapy may lead to severe side effects and even death. Hence, there is an urgent need of a therapy that can selectively kill CAFs without causing systemic toxicity. Herein we report a nanoparticle-based photoimmunotherapy (nano-PIT) approach that addresses the need. Specifically, we exploit ferritin, a compact nanoparticle protein cage, as a photosensitizer carrier, and we conjugate to the surface of ferritin a FAP-specific single chain variable fragment (scFv). With photoirradiation, the enabled nano-PIT efficiently eliminates CAFs in tumors but causes little damage to healthy tissues due to the localized nature of the treatment. Interestingly, while not directly killing cancer cells, the nano-PIT caused efficient tumor suppression in tumor-bearing immunocompetent mice. Further investigations found that the nano-PIT led to suppressed C–X–C motif chemokine ligand 12 (CXCL12) secretion and extracellular matrix (ECM) deposition, both of which are regulated by CAFs in untreated tumors and mediate T cell exclusion that prevents physical contact between T cells and cancer cells. By selective killing of CAFs, the nano-PIT reversed the effect, leading to significantly enhanced T cell infiltration, followed by efficient tumor suppression. Our study suggests a new and safe CAF-targeted therapy and a novel strategy to modulate tumor microenvironment (TME) for enhanced immunity against cancer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700