用户名: 密码: 验证码:
Controlled Growth of 1D MoSe2 Nanoribbons with Spatially Modulated Edge States
详细信息    查看全文
文摘
Two-dimensional (2D) transition metal dichalcogenides (TMDCs) possess interesting one-dimensional (1D) properties at its edges and inversion domain boundaries, where properties markedly different from the 2D basal plane, such as 1D metallicity and charge density waves, can be observed. Although 2D TMDCs crystals are widely grown by chemical vapor deposition (CVD), the fabrication of 1D TMDCs ribbons is challenging due to the difficulty to confine growth in only one dimension. Here we report the controlled growth of MoSe2 nanoribbons with an aspect ratio >100 by using prepatterned Se reconstructions on Au(100). Using scanning tunneling microscope and spectroscopy (STM/STS), the atomic and electronic structure of MoSe2 nanoribbons are studied. The ultranarrow ribbons show metallic behavior, while wider ribbons show a crossover from metallic to semiconducting behavior going from the edge to the center of the ribbon. The observed conductance modulations of the ultranarrow ribbons are attributed to 1D Moiré pattern. Remarkably, it shows a different periodicity compared with the 2D Moiré pattern in wider ribbons indicating that the 1D system is softened due to the high ratio of edge to basal plane bonds. Further, we demonstrated that the nanoribbons are stable against ambient conditions, which suggests that 1D TMDCs can be exploited for further applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700