用户名: 密码: 验证码:
Quantum Dots Embedded in Graphene Nanoribbons by Chemical Substitution
详细信息    查看全文
文摘
Bottom-up chemical reactions of selected molecular precursors on a gold surface can produce high quality graphene nanoribbons (GNRs). Here, we report on the formation of quantum dots embedded in an armchair GNR by substitutional inclusion of pairs of boron atoms into the GNR backbone. The boron inclusion is achieved through the addition of a small amount of boron substituted precursors during the formation of pristine GNRs. In the pristine region between two boron pairs, the nanoribbons show a discretization of their valence band into confined modes compatible with a Fabry–Perot resonator. Transport simulations of the scattering properties of the boron pairs reveal that they selectively confine the first valence band of the pristine ribbon while allowing an efficient electron transmission of the second one. Such band-dependent electron scattering stems from the symmetry matching between the electronic wave functions of the states from the pristine nanoribbons and those localized at the boron pairs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700