用户名: 密码: 验证码:
Dual-Wavelength Switchable Vibronic Lasing in Single-Crystal Organic Microdisks
详细信息    查看全文
文摘
Wavelength switchable micro/nanoscale laser is essential to construct various ultracompact photonic devices. However, traditional semiconductors as the gain media generally provide only monochromatic laser output due to their continuous energy band structures. For luminescent conjugated molecules, the broad emission band usually contains a series of vibronic peaks, which is very helpful for extending the lasing spectrum to several different wavelengths. Here we propose a novel strategy to realize wavelength switchable lasers based on the controlled competition of dual-wavelength vibronic lasing in single-component organic microcrystals. The vibrationally structured fluorescence property of the single-crystal organic microdisks brings dual-wavelength lasing at different vibronic bands. Their relative optical gain intensity was modulated by controlling the population on the certain vibronic level of the ground state with varied temperature, which consequently enabled the reversible switching of the dual-wavelength vibronic lasing. The results point out a promising route to the rational design of miniaturized lasers and other photonic elements with desired performances.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700