用户名: 密码: 验证码:
Entropy-Driven Pt3Co Nanocube Assembles and Thermally Mediated Electrical Conductivity with Anisotropic Variation of the Rhombohedral Superlattice
详细信息    查看全文
文摘
Understanding the shape-dependent superlattices and resultant anisotropies of both structure and property allows for rational design of materials processing and engineering to fabricate transformative materials with useful properties for applications. This work shows the structural evolution from square lattice of two-dimensional (2D) thin film to rhombic lattice of large three-dimensional (3D) assembles of Pt3Co nanocubes (NCs). Synchrotron-based X-ray supercrystallography determines the superlattice of large 3D supercrystal into an obtuse rhombohedral (Rh) symmetry, which holds a long-range coherence of both NC translation and atomic crystallographic orientation. The Rh superlattice has a trigonal cell angle of 104°, and the constitute NCs orient their atomic Pt3Co(111) planes to the superlattice Rh[111] direction. The temperature-dependent in situ small and wide-angle X-ray scattering (SAXS/WAXS) measurements reveal a thermally induced superlattice contraction of supercrystal, which maintains translational ordering but slightly develops orientational disordering. The observed increases of both the packing density and the rotation magnitude of NCs indicate a rational compromise between configurational and rotational entropies of NCs. The resultant minimization of the total free energy is responsible for the formation and stability of the obtuse Rh superlattice. The temperature-dependent in situ measurements of SAXS and electrical resistance reveal that, in conjunction with the thermally induced sharp contraction of superlattice at 160 °C, the supercrystal becomes measurable of electrical resistance, which was followed by a temperature-dependent linear increase. Upon rapid annealing from 250 °C, the supercrystal remains almost constant in both structure and electrical resistance. The heating-enabled electrical conductivity of the supercrystal at high temperature implies the formation of a NC-interconnected architecture. The experiments and overall analysis provide solid evidence and essential information for the use of shape-dependent structural anisotropies of supercrystal to create nanobased novel architecture with desired properties.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700