用户名: 密码: 验证码:
Tip-Enhanced Raman Voltammetry: Coverage Dependence and Quantitative Modeling
详细信息    查看全文
文摘
Electrochemical atomic force microscopy tip-enhanced Raman spectroscopy (EC-AFM-TERS) was employed for the first time to observe nanoscale spatial variations in the formal potential, E0′, of a surface-bound redox couple. TERS cyclic voltammograms (TERS CVs) of single Nile Blue (NB) molecules were acquired at different locations spaced 5–10 nm apart on an indium tin oxide (ITO) electrode. Analysis of TERS CVs at different coverages was used to verify the observation of single-molecule electrochemistry. The resulting TERS CVs were fit to the Laviron model for surface-bound electroactive species to quantitatively extract the formal potential E0′ at each spatial location. Histograms of single-molecule E0′ at each coverage indicate that the electrochemical behavior of the cationic oxidized species is less sensitive to local environment than the neutral reduced species. This information is not accessible using purely electrochemical methods or ensemble spectroelectrochemical measurements. We anticipate that quantitative modeling and measurement of site-specific electrochemistry with EC-AFM-TERS will have a profound impact on our understanding of the role of nanoscale electrode heterogeneity in applications such as electrocatalysis, biological electron transfer, and energy production and storage.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700