用户名: 密码: 验证码:
Nitrogen-Doped Mesoporous Carbons as Counter Electrodes in Quantum Dot Sensitized Solar Cells with a Conversion Efficiency Exceeding 12%
详细信息    查看全文
文摘
The exploration of catalyst materials for counter electrodes (CEs) in quantum dot sensitized solar cells (QDSCs) that have both high electrocatalytic activity and low charge transfer resistance is always significant yet challenging. In this work, we report the incorporation of nitrogen heteroatoms into carbon lattices leading to nitrogen-doped mesoporous carbon (N-MC) materials with superior catalytic activity when used as CEs in Zn–Cu–In–Se QDSCs. A series of N-MC materials with different nitrogen contents were synthesized by a colloidal silica nanocasting method. Electrochemical measurements revealed that the N-MC with a nitrogen content of 8.58 wt % exhibited the strongest activity in catalyzing the reduction of a polysulfide redox couple (Sn2–/S2–), and therefore, the corresponding QDSC device showed the best photovoltaic performance with an average power conversion efficiency (PCE) of 12.23% and a certified PCE of 12.07% under one full sun illumination, which is a new PCE record for quantum dot based solar cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700