用户名: 密码: 验证码:
High-Dimensional Atomistic Neural Network Potentials for Molecule–Surface Interactions: HCl Scattering from Au(111)
详细信息    查看全文
文摘
Ab initio molecular dynamics (AIMD) simulations of molecule–surface scattering allow first-principles characterization of the dynamics. However, the large number of density functional theory calculations along the trajectories is very costly, limiting simulations of long-time events and giving rise to poor statistics. To avoid this computational bottleneck, we report here the development of a high-dimensional molecule–surface interaction potential energy surface (PES) with movable surface atoms, using a machine learning approach. With 60 degrees of freedom, this PES allows energy transfer between the energetic impinging molecule and thermal surface atoms. Classical trajectory calculations for the scattering of DCl from Au(111) on this PES are found to agree well with AIMD simulations, with ∼105-fold acceleration. Scattering of HCl from Au(111) is further investigated and compared with available experimental results.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700