用户名: 密码: 验证码:
Direct Observation of Reversible Transformation of CH3NH3PbI3 and NH4PbI3 Induced by Polar Gaseous Molecules
详细信息    查看全文
文摘
Despite its competitive photovoltaic efficiency, the structural transformations of the prototypical hybrid perovskite, methylammonium lead iodide, are facilitated by interactions with polar molecules. Changes in optical and electronic properties upon exposure to ammonia potentially can enable the use of hybrid perovskites in gas-sensing applications. We investigated the effects of ammonia on CH3NH3PbI3 by exposing perovskite films to a wide range of vapor pressures. Spectroscopic analyses indicated that ammonium cations replaced the methylammonium cations in the perovskite crystal, thereby resulting in the formation of NH4PbI3. The transformation of CH3NH3PbI3 to NH4PbI3 caused distinct changes in the morphology of the film and its crystalline structure; however, the introduction of CH3NH2 gas reversed these changes. An in-depth understanding of the reversible chemical and structural alterations resulting from exposure to polar molecules can advance the development of hybrid perovskite sensors and provide insight into mechanisms by which perovskites convert due to interactions with polar molecules.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700