用户名: 密码: 验证码:
Nanoparticle-Programmed Surface for Drug Release and Cell Regulation via Reversible Hybridization Reaction
详细信息    查看全文
文摘
A surface directly connects the bulk of a material to its surroundings. The ability to dynamically regulate the surface without affecting the bulk of a material holds great potential for new applications. The purpose of this work was to demonstrate that the surface can be dynamically changed using nanoparticles and oligonucleotides (ODNs) in a reversible and reiterative manner. A dual-functional nanogel was synthesized as the model of nanoparticles using miniemulsion polymerization and click chemistry. The nanogel can not only adsorb drugs for sustained drug release but also bind a surface functionalized with complementary ODNs. Importantly, hybridization reaction and ODN degradation can drive reversible and reiterative nanogel binding to the surface for dynamic change, which in principle is unlimited. Moreover, nanogel-mediated dynamic change offers the surface with the drug-releasing function for inhibiting the growth of surrounding cells. Because nanogels can be replaced by any functional nanoparticles with a diverse array of properties, nanoparticle-programmed surface change constitutes a promising platform for various applications such as drug delivery and stent implantation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700